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EXECUTIVE SUMMARY 
Sinkhole subsidence and collapse may cause significant structural damage to transportation 
infrastructure assets and are a major problem in karst areas where soluble bedrock is predominant. 
Subsequently, transportation infrastructure management agencies at all levels (e.g., federal, state, 
tribal, and local) dedicate a large amount of time and money to routinely detect and map sinkholes 
as part of their infrastructure asset management programs. These collected sinkhole data are used 
by the aforementioned agencies to determine the extent and severity of sinkholes, and then to make 
decisions on the distribution of limited resources for sinkhole hazard mitigation to avoid potential 
public safety threats and problems.  

Sinkhole subsidence or collapse is a natural hazard of national scope – sinkholes are found in all 
50 states, but predominantly in areas with karst terrain. Along with recent years’ economic growth, 
man-made transportation infrastructure assets have expanded onto karst terrain that was previously 
rural and sparsely developed. Sinkholes pose a severe threat to these newly built transportation 
infrastructure assets. Therefore, being able to accurately detect and map existing sinkholes is very 
important for transportation infrastructure sinkhole risk assessment and hazard mitigation, and 
ultimately, leading to more informed planning of transportation infrastructure and public safety. 

Traditionally, sinkholes are primarily detected through area reconnaissance, which includes visual 
inspection of a site to locate existing sinkholes or device inspection of a site to locate potential 
sinkholes or previously filled sinkholes. This method is expensive, time-consuming, labor-
intensive, and potentially dangerous to the inspectors. More importantly, because of its ground-
based nature, this method is limited not only by the accessibility of the site but also the ability of 
the inspectors or devices to observe the entire site. For example, heavy-vegetation in a certain site 
may make it extremely difficult or even impossible to conduct any reconnaissance at all.  

To overcome these challenges, researchers from the Earth Data Analysis Center (EDAC) and the 
Department of Civil, Construction, and Environmental Engineering at the University of New 
Mexico (UNM) collaborated on this research to explore the utility of airborne Light Detection and 
Ranging (LiDAR) in detecting and mapping sinkholes. The research team used airborne LiDAR 
data in combination with not only object-based image analysis (OBIA) techniques but also 
auxiliary context information such as site and association to improve the accuracy of the current 
morphology-based sinkhole detection methods. Specifically, the primary input data for this 
research are airborne LiDAR, which uses laser light to densely sample the Earth’s surface to 
produce highly accurately measurements in x, y, and z dimensions. In addition, this research used 
OBIA techniques to delineate the sinkhole boundaries. Additionally, auxiliary context information 
such as site (e.g., specific terrain does not have sinkholes) and associate (e.g., urban vs. rural) were 
used to further improve the accuracy of sinkhole detection and mapping.  

This research also developed a robust toolset that be used in standard geographic information 
systems (GIS) for operational implementation. This toolset can be used to detect and map sinkholes 
with an adequate degree of accuracy while maximizing the ability to assist inspectors with varying 
expertise. Results revealed that airborne LiDAR detected sinkholes and ground surveyed sinkholes 
have statistically similar morphometric measurements. This research also developed a guidebook 
on using the developed tools for professional education and training. The ultimate goal of this 
research is to train a new generation of transportation engineers that can effectively use the 
developed techniques and tools to accurately and rapidly detect and map sinkholes.  
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1. INTRODUCTION 
Sinkholes are natural depressions in the Earth’s surface that form in places where carbonate rocks 
are dissolved from water and overlying soil particles are carried away underground, causing the 
surface to subside gradually or collapse suddenly (1,2,3). Sinkholes are a major geohazard in many 
karst areas because they can destroy infrastructure assets such as roadways and buildings. The 
Cambridge English Dictionary defines karst as an area of land formed of rock such as limestone 
that is worn away by water to make caves and other formations (4). Sinkholes have also played an 
important role in groundwater systems by providing connections between surface water and 
groundwater – collecting surface precipitation and draining it internally into the subsurface (3). 

In general, sinkholes can be classified into three types, including dissolution sinkholes, cover-
subsidence sinkholes, and cover-collapse sinkholes (5). For dissolution sinkholes, small amounts 
of soil or vegetation are found over the limestone or other bedrock, and water from precipitation 
and runoff slowly trickles through cracks and crevices in the bedrock to dissolve it (6). Therefore, 
dissolution sinkholes gradually form in the Earth’s surface. Cover-subsidence sinkholes occur in 
areas sand covers the bedrock. The sand filters down into openings in the rock, causing the land 
surface to sink (6). Similar to dissolution sinkholes, cover-subsidence sinkholes occur slowly over 
time. For cover-collapse sinkholes, ground sediments gradually erode or spall into the cavern from 
the bottom, which will cause the ground suddenly crumble. When the thin layer between the 
surface and the underground openings collapse, a sinkhole will occur and swallow any objects 
(e.g., trees and cars) or structures (e.g., buildings and roads) above (6). 

Both sinkhole sudden collapse and gradual subsidence may cause significant damage to 
infrastructure assets such as roadways, bridges, and buildings (2). In rural areas, sinkholes could 
cause the loss of arable land as well as infrastructure assets such as roadways and bridges. In an 
urban setting sinkholes also pose a threat to humans and area of particular concern to urban 
planners, homeowners, and insurance companies (2,7,8). In recent years, sinkhole risks are 
becoming particularly severe in urban areas that lack careful planning and where land depressions 
are frequently reported and developed (9).  

Sinkhole subsidence and collapse is a natural hazard of national scope – sinkholes are found in all 
50 states, but predominantly in areas with karst terrain. A substantial amount of karst terrain is 
located in Transportation Consortium of South-Central States (Tran-SET) states, including 
Louisiana, Oklahoma, Texas, Arkansas, and New Mexico (10). Along with recent years’ economic 
growth, man-made transportation infrastructure and buildings have expanded onto karst terrain 
that was previously rural and sparsely developed (11). Sinkholes pose a severe threat to these 
newly built infrastructure assets – sinkhole hazards could cause substantial structural damage. 
Repair of sinkhole damages to buildings, highways, and other infrastructure systems represents a 
significant national cost (11). For example, sparse and incomplete data show that the average cost 
of karst-related damages in the United States over the last 15 years is estimated to be at least $300 
million per year and the actual cost is probably higher (11). Because of their sudden appearance 
and hazardous nature, it is important to characterize sinkholes’ embryonic structure and identify 
their location at an early stage (12).  

Therefore, being able to accurately detect and map existing sinkholes (sinkholes that have occurred 
and appeared on the ground) is critical for transportation infrastructure sinkhole risk assessment 
and hazard mitigation, and ultimately, leading to more informed planning of transportation 
infrastructure and public safety. However, the current methods for detecting and mapping existing 
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sinkholes are expensive, time-consuming, labor-intensive, tedious, subjective, potentially 
dangerous to inspectors, requiring specialized staff on a regular basis, and can exhibit a high degree 
of variability, thereby causing inconsistencies in surveyed data over space and across evaluation. 
In addition, sinkhole data collected by current methods can only be used for a single purpose and 
cannot be shared with other government agencies (e.g., the U.S. Geological Survey) to reduce the 
cost. To solve these problems, this research is focused on developing an accurate and rapid 
airborne LiDAR-based existing sinkhole detection and mapping method and transferring the 
technologies to transportation management agencies for implementation and workforce 
development via a developed toolset. More specifically, this research is focused on developing an 
airborne LiDAR-based sinkhole detection and mapping toolset which will enable transportation 
engineers to rapidly detect and map sinkholes with an adequate degree of accuracy while 
maximizing the ability to assist transportation engineers with varying expertise. 
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2. OBJECTIVES 
The main objective of this research is to develop a new approach to accurately and rapidly detect 
and map existing sinkholes through the use of airborne LiDAR data and transfer the technologies 
to transportation infrastructure management agencies at all levels (e.g., federal, state, tribal, and 
local) for implementation and workforce development. Specifically, this research project will: (1) 
develop a complete process and toolset for detecting and mapping collapse sinkholes through the 
use of airborne LiDAR data; (2) identify best practices for the effective implementation of a 
statewide sinkhole hazard management system (SHMS); and (3) develop a guidebook for airborne 
LiDAR-based existing sinkhole detection and mapping which can be used for professional 
education and training. 
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3. LITERATURE REVIEW 
As mentioned in the introduction section, sinkholes, particularly those close to infrastructure 
assets, could cause substantial structural damage to infrastructure assets, and therefore, being able 
to accurately and rapidly detect and map them is vital. Subsequently, transportation infrastructure 
management agencies at all levels (e.g., federal, state, tribal, and local) dedicate a large amount of 
time and money to detect and map existing sinkholes as part of their infrastructure asset 
management programs. These collected sinkhole data are used by the aforementioned agencies to 
determine the extent and severity of sinkholes, and then to make decisions on the distribution of 
limited resources for sinkhole hazard mitigation to avoid potential public safety threats and 
problems.  

Traditionally, sinkholes are detected through area reconnaissance, which includes visual 
inspection of a site to locate existing sinkholes or instrumental inspection of site to locate potential 
sinkholes or previously filled sinkholes. For visual inspection, collapse sinkhole data are collected 
by inspector walking along a sinkhole and rating the risk factors. These data are primarily 
handwritten data and attached to archived images acquired by inspectors on the ground. 
Instrumental inspection involves using instrument for locating potential sinkholes, and the most 
popular instruments include resistivity and electromagnetic survey equipment, seismic survey 
equipment, ground penetration radar (GPR), microgravity survey equipment, probing and boring 
equipment, and video televiewer (13). Both visual inspection and instrumental inspection are 
expensive, time-consuming, labor-intensive, and potentially dangerous to inspectors. Visual 
inspection is also subjective and data collected by different inspectors can exhibit a high degree of 
variability which causes inconsistencies in surveyed data over space and across evaluation. 
Instrumental inspection is objective, but it requires specialized staff on a regular basis. Because of 
its high price and limited suitability (potential sinkholes or previously filled sinkholes), it has not 
been used for routine sinkhole inspection, but instead, it has been used for on-call or emergency 
inspection. More importantly, because of its ground-based nature, area reconnaissance method is 
limited not only by the accessibility of the site but also the ability of the inspectors or instruments 
to observe the entire site. For example, heavy vegetation may make it difficult or even impossible 
to inspect certain sites (13). 

Another method for sinkhole detection is through a review of topographic maps, contour maps, 
geologic maps, and sinkhole inventory maps. These maps provide fair to good reliability for 
locating existing sinkholes and for determining the susceptibility of an area to future sinkhole 
development due to geologic and hydrologic factors (13). However, the accuracy of detecting 
sinkholes from these maps depends on sinkhole size, map scale, contour interval, and slope of the 
ground surface (14). For example, on a U.S. Geological Survey (USGS) 1:24,000 scale 7.5 minute 
quadrangle map, the minimum size of detectable sinkholes is 48 m in diameter, which fails to 
detect any sinkholes that are smaller than that dimension, although small sinkholes could be far 
more dangerous than large sinkholes (2). Therefore, this method has not been operationally used 
as a primary method for detecting and mapping existing sinkholes, but instead, as a complementary 
method. 

Other researchers have explored the utility of imagery collected by optical sensors in detecting and 
mapping existing sinkholes. These studies relied on large-scale and high-spatial resolution aerial 
photos and satellite images – locating sinkholes in the images and then digitizing them in. For 
example, Wilson (15) identified 900 existing sinkholes from the 1926 and 1995 aerial photos 
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collected for the Pinellas County in the State of Florida. Ernst et al. (16) used QuickBird and 
WorldView satellite images to study the regional variation of sinkhole morphology. Examination 
of stereoscopic aerial photos may also be used to detect and locate existing sinkholes. However, 
the reliability of the use of aerial photos or satellite images for detecting and mapping sinkholes 
depends on the scale of the images and the experience of the observers (13). This method is prone 
to observers’ subjective bias, and it is also expensive to deploy, requiring specially trained 
observers and substantial technical expertise, which ultimately prevents the further exploration of 
their applications in detecting and mapping existing sinkholes.  

In recent years, LiDAR technology has been developed for detailed Earth’s surface elevation data 
collection. LiDAR uses laser light to densely sample the Earth’s surface to produce highly accurate 
measurements in x, y, and z dimensions. There are two types of LiDAR, including airborne LiDAR 
and terrestrial LiDAR. For airborne LiDAR, the data collection system is installed on either a 
helicopter or fixed-wing airplane. For terrestrial LiDAR, the data collection system is installed on 
a moving platform (e.g., a vehicle) or static platform (e.g., a tripod). Currently, airborne LiDAR is 
primarily used for aerial mapping applications. Compared with traditional optical sensor based 
remote sensing (e.g., stereoscopic aerial photography and satellite imagery), airborne LiDAR can 
collect elevation data with much higher accuracy (17), allowing the examination of the Earth’s 
surface evaluation change accurately and rapidly. In addition, LiDAR has a unique capability – it 
can filter through vegetation to the ground as long as light can be seen under vegetation canopy. 
These features make airborne LiDAR hold the potential to be used as an effective means to detect 
and analyze any natural hazards characterized with surface depression such as sinkholes. In 
addition, many states in the United States is in the process of acquiring nationwide airborne LiDAR 
data (USGS Quality Level 2) as part the national 3D Elevation Program (3DEP). This program is 
a collaborative effort among government entities, academia, and the private sectors to collect high-
spatial resolution 3D data across the United States (18). This project is expected to deliver 1 m (5 
m for Alaska) digital elevation models (DEMs) with metadata and accuracy reports. High-quality 
LiDAR collected by the 3DEP will be provided to the public for free access and use. Coupled with 
advanced feature extraction techniques in remote sensing, these high-quality data offer a great 
opportunity to detect and map existing sinkholes in a rapid, accurate, and cost-effective manner on 
an unprecedented national scale. 

Airborne LiDAR-based sinkhole detection techniques have been the subject of previous research 
and several methods have been developed and investigated (2,8,12,19,20,21,22). However, the 
effectiveness of using airborne LiDAR to detect and map existing sinkholes has received very 
limited attention. Most of the aforementioned research on airborne LiDAR-based sinkhole 
detection and mapping postulated that morphology-based surface feature extraction can effectively 
detect existing sinkholes because geometrically sinkholes are oval-shaped concave depression in 
the Earth’s surface. 

Therefore, the majority of previous studies focused on detecting objects that form a distinct shape-
transition in reference to their surroundings and area embedded within the terrain. However, these 
methods have limited accuracy in detecting collapse sinkholes because they only consider 
sinkholes’ morphology characteristics. The reality is that sinkholes have varying sizes, shapes, and 
appearance under various landforms (12), and they may not even exist in certain contexts. For 
example, a dry stock pond may be false positively detected as a sinkhole. In addition, these 
aforementioned research did not develop any functional tools to assist with their operational 
deployment, and in order to realize their intended function, specialized staff members are required 
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on a regular basis to carry out the complicated algorithms. That being said, only the developers of 
these algorithms know how to use them to detect and map sinkholes from airborne LiDAR. 

When trying to identify sinkholes from airborne LiDAR data, several issues ought to be 
considered: (1) the quality of the LiDAR data, including spatial resolution and vertical accuracy – 
government entities collect LiDAR data with different quality levels; (2) the skills of the sinkhole 
inspectors – this reflects if the inspectors have specialized skills to use LiDAR data to conduct 
sinkhole detection and mapping; and (3) the usefulness of sharing tools – for the benefit of 
researchers or engineers or the benefit of the public at large. The objective of sinkhole detection 
in general is to find a balance between the quality of LiDAR data and the skills of sinkhole 
inspectors and the usefulness of tool sharing. 

This research used airborne LiDAR data in combination with not only object-based image analysis 
(OBIA) techniques but also auxiliary context information such as site (e.g., specific terrain does 
not have sinkholes) and associate (e.g., urban vs. rural) to improve the accuracy of the current 
morphology-based sinkhole detection methods, and implement these by developing tools that can 
be used in standard geographic information systems (GIS). The methodology used in this research 
allows for the development of a robust LiDAR-based existing sinkhole detection and mapping 
toolset that provides an adequate degree of accuracy and at the same time maximizing the ability 
to assist inspectors with varying expertise. As an additional benefit, the developed tools can also 
be used to detect and map playas and other surface depression hazards. 
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4. METHODOLOGY 
This research project’s methodology includes: (1) data acquisition and preparation; (2) preliminary 
sinkhole detection and map development; (3) final sinkhole detection and map development; and 
(4) sinkhole map accuracy validation. 

4.1. Data Acquisition and Preparation 
The project team focused its study on the geographical region of Southeast New Mexico (City of 
Roswell and City of Carlsbad area or known as Roswell-Carlsbad district) because this area 
typifies karst topography. Roswell-Carlsbad district is a large gypsum karst area. As an example, 
many potential massive sinkholes can occur in Carlsbad (Figure 1). Highways in this area have 
signs warning drivers to be wary of potential sinkholes (Figure 2). In addition, this research 
project’s technical advisors, including New Mexico Department of Transportation (NMDOT) – 
District 2 and National Cave and Karst Research Institute (NCKRI), are also located in this area. 
Specially, NMDOT District 2 is located in the City of Roswell, while NCKRI is located in the City 
of Carlsbad. They have ground-surveyed or digitized sinkhole data and maps that were planned to 
be used as ground-truth data for sinkholes in this area. However, due to time constraints, the project 
team was only able to obtain digitized ground-truth data from NMDOT District 2. 

 
Figure 1. Roswell-Carlsbad District and Rio Hondo and Upper Pecos-Black Watershed, New Mexico. 
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Figure 2. Signs warn drivers to be wary of potential sinkholes near Carlsbad (adopted from Carlsbad Current Argus). 

As part of the 3DEP, in 2014 the Federal Emergency Management Agency (FEMA) Region 6 
collected Quality Level (QL2) airborne LiDAR data for the Rio Hondo Watershed (HUC08 sub-
basin) located in Southeast New Mexico. Figure 1 shows the boundary of the Rio Hondo 
Watershed. This watershed includes most of the City of Roswell. It revealed that NMDOT did not 
collect QL2 airborne LiDAR for City of Carlsbad and Loving Village in 2016 within the Upper 
Pecos-Black Watershed. However, NMDOT collected aerial images for the City of Carlsbad and 
Loving Village in 2016. The coverage of these aerial images are shown in Figure 3. Therefore, the 
project team used the FEMA collected QL2 airborne LiDAR for this research. 

 
Figure 3. Aerial photo coverage for Carlsbad and Loving Village (adopted from NMDOT). 

The airborne LiDAR for this area are in raw format – LAS format, files that have .las or .laz 
extension (compressed version of las). The .las files are typically very large, contain hundreds of 
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thousands points, known as a point cloud (Figure 4), and therefore, most times they are compressed 
to .laz files to reduce the file size by approximately 50%. LAS format is a binary format which can 
maintain information specific to the nature of the airborne LiDAR data while not being overly 
complex. The approximately 2 terabytes (TB) of airborne LiDAR data were divided into 2,411 
separate las tiles of 1,500 m by 1,500 m at the maximum (or up to 225 hectares) in order to assist 
with data handling and processing. Files were projected into the UTM projection, Zone 13N, using 
the NAD83 datum and GRS80 spheroid. All elevation data were delivered in meters (Figure 5). 

 
Figure 4. The display of a point cloud that covers a small portion of the City of Albuquerque. 

 
Figure 5. The Rio Hondo Watershed boundary (dark red) and individual LAS tiles (light red). 
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All individual LAS files were mosaicked into a more manageable LAS dataset since individual 
LAS file covers such a small portion of the ground. An LAS dataset is a standalone file that 
references one or more LAS files. In other words, a LAS dataset is a referenced container to a 
collection of LAS files. LAS datasets are designed to provide rapid access to large volumes of 
LAS files without the need for data conversion or importing. When working with a few LAS files 
that cover a small study area, LAS datasets may not be needed. However, when working with 
thousands of LAS files that cover an entire jurisdiction area, LAS datasets are the most effective 
solution because users can rapidly access to any specific LAS tile without looking for its spatial 
coverage information. LAS datasets are a proprietary format developed by ArcGIS – a widely 
adopted GIS software, which was used as the primary software for this research.  

An LAS dataset can also have feature classes for surface constraints, such as breaklines, water 
polygons, and area boundaries. Up to three files can be associated with an LAS dataset, including 
LAS data filed (.lasd), LAS auxiliary file (.lasx), and LAS projection file (.prj). The .lasd file only 
stores references to actual LAS files and surface constraints. The .lasx file provides a spatial index 
structure that helps improve the performance of an LAS dataset. If LAS files do not have a spatial 
reference or have an incorrect spatial reference defined in their header files, a .prj file can be 
created for the LAS dataset. In that case, the new coordinate system information in the .prj file will 
take precedence over the spatial reference in the header section of the LAS files. 

Once the LAS dataset is created, it can used to create digital elevation models (DEMs) and digital 
surface models (DSMs). A DEM, also known as digital terrain model (DTM), is a digital 
representation of bare ground surface terrain, while DSM is a digital representation of the mean 
sea level (MSL) elevations of the reflective surfaces of trees, buildings, and other features elevated 
above the bare earth. Figure 6 show the difference between DTM and DSM. 

 
Figure 6. An illustration of the difference between DTM and DSM (adopted from 3DMetrica). 



11 

To enable the detection of sinkholes, DEMs (or DTM) are necessary because sinkholes depressions 
in the Earth’s surface. Because the Rio Hondo Watershed is a very large area, the project team 
processed 40 LAS tiles that are in close proximity to the East side of the City of Roswell and the 
size of the study area is approximately 90 km2 (Figure 7).  

 
Figure 7. The processed DEMs tile for the study area; 40 tiles with a total area of 90 km2. 
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4.2. Preliminary Sinkhole Detection and Map Development 
Geometrically, sinkholes are depressions in the Earth’s surface surrounded by terrain (12). Their 
relative subsidence from the Earth’s surface level characteristic leads the sinkhole detection 
principle focuses on identifying the distinct shape-transition boundary in reference to the 
surrounding terrain (Figure 8). For this step, the project team focused on detecting all the possible 
locations for existing sinkholes and presenting them on a map.  

 
Figure 8. Sinkhole detection principle of identifying the distinct shape-transition boundary in reference to the surrounding 
terrain (adopted from NCKRI). 

In GIS, surface depressions are referred to as sinks, which are a cell of a set of spatially connected 
cells whose flow direction cannot be assigned any of the eight valid values for a flow direction 
(Figure 9), which can occur when all neighboring cells have higher values than the processing cell 
or cells in the middle. The project team used this concept to identify all possible locations of 
surface depressions, which is described in the following. 

 
Figure 9. Eight flow directions for all neighboring cells of a focal cell. 
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The project team used pixel-based feature extraction technique to identify all possible locations of 
surface depressions. First, all sinks were identified. It should be noted that sinks are not sinkholes. 
In GIS, a sink is defined as a cell with an undefined drainage direction – no cells surrounding it 
are lower than it. Second, all sinks were filled (Figure 10). Third, the original DEM was subtracted 
from the filled DEM to detect the location and depth of all possible sinkholes to generate the 
preliminary sinkhole map. A geoprocessing tool (Figure 11) compatible with ArcGIS (Figure 12) 
was developed to automate the entire process mentioned above.  

 
Figure 10. An illustration of the process of filling sinks. 

 
Figure 11. The Interface of the geoprocessing tool for preliminary sinkhole detection. 

 
Figure 12. The toolbox that can be added to the ArcGIS software interface. 
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4.3. Final Sinkhole Detection and Map Development 
For this task, the project team focused on improving the preliminary sinkhole map through two 
methods. The first method was using context-based feature extraction (e.g., OBIA) to remove false 
positively detected sinkholes. The second method was using morphology-based feature extraction 
(e.g., size) to remove false positively detected sinkholes. Detailed discussion of these two methods 
are provided in the following section. 

4.3.1. Context-based Feature Extraction 
Prior to discussing context-based feature extraction, it is necessary to discussion remote sensing 
image classification. The classification of remotely sensed imagery (e.g., aerial photos, satellite 
imagery, and LiDAR derived DEM and DSM) is the process of assigning land use and land cover 
(LULC) classes to pixels (Figure 13). Generally, remote sensing image classification can be 
divided into two general approaches, including pixel-based classification and object-based 
classification. Although pixel-based analysis has long been the mainstay approach for classifying 
remote sensing images, OBIA has become increasingly popular over the last decade. 

 
Figure 13. An illustration of remote sensing imagery classification (adopted from Land Info). 

For pixel-based classification, individual image pixels or cells are analyzed by the spectral 
information (spectral values) they contain. That being said, pixel-based classification methods 
explore the spectral information for assigning a pixel to a class according to the spectral difference 
between the classes. There are two types of pixel-based classification methods, including 
unsupervised classification and supervised classification. In unsupervised classification, the 
classes are created based on spectral analysis of pixels without the user providing training sites 
(group of sample pixels). Then the image processing software will use established algorithms (e.g., 
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k-means and ISODATA) to determine which pixels are related and group them into classes. The 
users can specify which algorithm to use and the desired number of output classes. 

Conversely, supervised classification methods are based on the idea that a user can select training 
sites in an image that are representative of specific classes and then direct the image processing 
software to use these training sites as references for the classification of the remaining pixels in 
the image through the use of various algorithms (e.g., minimum distance to means and maximum 
likelihood). Training sites are selected based on the knowledge of the users. The users can also set 
the bounds for how similar pixels have to be to group them. These bounds are often determined 
based on the spectral characteristics of the training sites with a certain increment or decrement. 
The users can also determine the number of classes by creating matching training sites. 

Many remote sensing analysts use a combination of supervised and unsupervised classification 
processes to develop output classes. However, these approaches have a common drawback – they 
only use spectral information; that said, they do not exploit spatial and contextual information. For 
example, when using pixel-based classification methods for an image, a dry stock pond will be 
false positively detected as a sinkhole due to its corresponding pixels’ spectral similarity. 
Therefore, oftentimes users will receive a classified images with “salt and pepper” issues.  

Unlike pixel-based classification, OBIA operates on objects consisting of many homogenous 
pixels grouped together in meaningful way through segmentation. In addition to the spectral 
information used in pixel-based classification methods, OBIA exploits shape and spatial proximity 
needed for classification. One of the most significant advantages of segmentation is that it creates 
objects representing land cover types that may be spectrally variable at the pixel level and thus 
eliminates the “salt and pepper” issues associated with per-pixel classification (Figure 14). Another 
advantage of OBIA is its ability to leverage feature shapes, topological features, and hierarchical 
structures to group pixels to objects.  

 
Figure 14. Pixel-based image analysis classification vs. OBIA classification. 
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One disadvantage of OBIA is that the segmentation process and subsequent calculation of the 
topological relationships between objects can use a large amount of computer resources. However, 
recent advances in computing have provided adequate processing power to most computers. 
Therefore, this disadvantage of OBIA has limited impact on this research project.  

Many algorithms exist for the segmentation process, and these algorithms can operate on many 
more object-related features than typically available with pixel-based approaches. These 
algorithms include Region Growing, Watershed Detection, and Mean Shift. Region Growing 
focuses on finding similar pixels from a seed and neighboring pixels. Watershed Detection is 
mostly used for gray-scale images, and it treats images like a topographic surface to detect 
homogeneous pixels to group them as a watershed. Mean Shift is a local homogenization technique 
that concentrates on damping shading and tonality difference in localized objects to find the 
clustering of objects. Each algorithm has its strengths and limitations and there is no unanimous 
consent on the best one. The project team decided to use Mean Shift because it is compatible with 
ArcGIS which enables the automation of the entire process. The general process of Mean Shift 
algorithm is: (1) identifying regions with high density in feature space; (2) determining the centroid 
of each region; (3) moving the region to the location of the new centroid; and (4) repeat until 
convergence. Figure 15 shows the aforementioned Mean Shit segmentation process. 

 
Figure 15. An illustration of the Mean Shift segmentation (adopted from chioka.in). 
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The detailed parameters for Mean Shift algorithm can be found Appendix B. With the aid of the 
Mean Shift segmentation, it is possible to delineate sinkhole boundaries more accurately. Being 
able to accurately delineate sinkhole boundaries is important to undertake many sinkhole 
inspection and decision-making actions. First, it enables a better estimation of a sinkhole’s basic 
morphometric characteristics, including, but not limited to, width, length, area, perimeter, depth, 
volume, elongatedness (length/width), and standard deviation of elevation. Second, it enables the 
characterization and investigation of each individual sinkhole. 

In addition, other context information, including, but not limited to, soil types, infrastructure and 
political boundary, vegetation, LULC, and hydrology, can be used to further improve sinkhole 
detection accuracy. Table 1 lists all the context information and how to appropriately use them. 
Users should identify and obtain all available layers and composite them into a single layer and 
use it as a filtering layer to constrain the analysis to those areas where sinkholes are expected.  

Table 1. Context information elements and matching application. 

Context Data Example Sources General Applications 

Shape and Spatial 
Proximity LiDAR derived DEM Delineate sinkhole boundary 

Soil Types USGS geological maps Sinkholes will not occur in certain types of 
soil such as gypsum-rich soils  

Infrastructure 
Boundary 

Infrastructure footprint 
boundary maps 

Remove objects that false positively 
detected as sinkholes such as stadiums 

Vegetation USDA National Agricultural 
Imagery Program (NAIP) 

Vegetation located on top of sinkholes 
appears circular shape 

LULC USGS National Land Cover 
Database (NLCD) maps 

Remove objects that false positively 
detected as sinkholes such as dry ponds 

Hydrology USGS National Hydrology 
Database (NHD) 

Remove objects that false positively 
detected as sinkholes such as dry ponds 

 

4.3.2. Morphology-based Feature Extraction 
The project team also used morphology-based feature extraction concept to further improve the 
accuracy of sinkhole detection. The premise is that sinkholes will have a specific range of surface 
area for a certain area. For example, if sinkholes are expected to have a surface area ranges from 
100 m2 to 10,000 m2, users should be able to leverage this area-range to filter the sinkhole detection 
results. That being said, when the area-range filter is applied, any sinkholes that are smaller than 
100 m2 and larger than 10,000 m2 will be identified, selected, and discarded. The project team 
worked with NCKRI and it revealed that the aforementioned size range is operationally effective 
for the project’s study area. At the time of the report writing, the project team decided to use only 
sinkhole size in terms of area to conduct the morphology-based feature extraction. Other 
morphometric characteristics, including width, length, perimeter, depth, volume, elongatedness 
(length/width), and standard deviation of elevation, have not been widely used for sinkhole 
extraction yet due to limited understanding of their appropriate usage. That being said, a sinkhole 
could have any width, length, perimeter, depth, volume, and possibly elongatedness. 
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4.3.3. Methodology Workflow Summary 

This section summarizes the workflow of the aforementioned steps. A workflow chart can assist 
in streamlining and automating repeatable tasks, minimizing the chances for generating errors, and 
maximizing overall sinkhole detection and mapping efficiency. A workflow can also help the 
audience understand the complete process of the methodology. Figure 16 shows the flowchart of 
the methodology. It should be noted that the flowchart includes data preparation, preliminary 
sinkhole detection and mapping, and final sinkhole detection and mapping. 

 
Figure 16. Flowchart of the methodology. 
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Two tools were developed to accomplish the aforementioned process. The first tool is the “DEM 
Creator” and it is designed to create DEM tiles if users do not have them readily available. The 
second tool is the “Sinkhole Extractor” and it is designed to extract sinkholes and map them. Figure 
17 shows the Sinkhole Toolbox and the two aforementioned tools reside in. Detailed user interface 
for the two aforementioned tools will be provided in Section 5 Analysis and Findings. 

 
Figure 17. The Sinkhole Toolbox that is compatible with ArcGIS. 

4.4. Sinkhole Map Validation 
This step focused on validating the accuracy of sinkhole detection and mapping. Sinkhole data 
collected through aerial photo digitization were used as the ground-truth data and then compared 
them to the sinkhole map generated from airborne LiDAR data analysis. Cohen’s Kappa statistics 
was used to measure the overall agreement between the LiDAR detected sinkholes points and a 
set of ground-truth sinkhole points (aerial photo digitized sinkholes). At individual sinkhole level, 
the project team planned to use either Paired Student T-Test (if the data are parametric) or 
Wilcoxon Signed Rank Test (if the data are non-parametric) to examine if LiDAR detected 
sinkholes and ground surveyed sinkholes have statistically similar morphometric measurements.  
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5. ANALYSIS AND FINDINGS 

5.1. Data Preparation Results 
As mentioned in Section 4.1., the LAS tiles were processed to generate a LAS dataset, which was 
then used to create DEM tiles. It should be noted that many LAS tiles can be used to create a single 
mosaicked LAS dataset or each LAS tile can be used to create a single LAS dataset. In the latter 
case, the amount of LAS datasets will be equal to the amount of LAS tiles. This project created a 
single LAS dataset for all LAS tiles, and then created a DEM from the LAS dataset. Operationally, 
both methods will work. However, it is suggested that creating a single LAS dataset for many LAS 
tiles. This is because each individual LAS file covers a small portion of the ground and mosaicking 
them into a single and more manageable LAS dataset can lead to more effective data processing. 

Considering that oftentimes users will have LAS files instead of DEMs, the project team developed 
an ArcGIS compatible tool to assist with data processing. This tools should be used if the users do 
not have existing DEM tiles that can be used to detect and map sinkholes. This tool has the 
following user interface (Figure 18), and it can be used to create DEM tiles from the LiDAR LAS 
tiles. As the figure shows, users can decide whether to input a single LAS tile or a folder of LAS 
tiles through the LAS Input Directory. Each individual LAS tile should be placed into a separate 
folder if the users decide to input a single LAS tile. Detailed instruction on how to use this tool is 
provided in Appendix B. It is suggested that the users adopt the default settings, and the few 
parameters that need users’ input are the LAS Input Directory, Output Raster Directory, and the 
Output Coordinate System. The output DEM raster will be a single tile if the users input a single 
LAS tile. The output DEM raster will be also be single tile if the users input many LAS tiles, but 
the single DEM tile’s spatial coverage will be equal to all input LAS tiles’. 

 
Figure 18. The user interface of the DEM Creator tool that is compatible with ArcGIS. 
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After running the DEM Creator tool, users will obtain a DEM raster layer as below. It should be 
noted that a single mosaicked DEM layer will be created even if users decide to use multiple LAS 
tiles as input for the DEM Creator tool (Figure 19). Individual DEM layers will be created 
separately if the users decide to use a single LAS tile as the input. That being said, the tool needs 
to run many times in order to obtain the same DEM shown in Figure 20 if a single LAS tile is used. 

 
Figure 19. The mosaicked DEM layer when using multiple LAS tiles as input. 
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Figure 20. The individual DEM layers when using a single LAS tile as input. 

5.2. Preliminary Sinkhole Detection and Mapping Results 
As mentioned in Section 4.2., when using the preliminary sinkhole detection and mapping tool, 
users need to provide the input DEM tile or tiles and select the output location to save the 
preliminarily detected sinkhole layer. It should be noted that users can use either a mosaicked 
DEM tile or individual DEM tiles, depending on the availability of the data. Figure 21 shows the 
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output sinkhole layer from this tool. As it shows, the detected sinkholes are distributed across the 
terrain. That being said, the detected sinkholes appear all over the map. However, in reality the 
density of sinkholes will be less than this. The next task, final sinkhole detection and mapping, 
was focused on improving the accuracy of this preliminary sinkhole map. 

 
Figure 21. The output of the preliminary sinkhole detection tool. 
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5.3. Final Sinkhole Detection and Mapping Results 
As mentioned in Section 4.3., the project team developed a final sinkhole detection and mapping 
tool based on context-based feature extraction techniques and morphology-based feature 
extraction techniques. Figure 22 exhibits the user interface of this tool. As the figure shows, users 
can choose the output path through the Output Directory parameter, select the input DEM tiles 
through the DEM Input Directory parameter, and choose the output sinkhole polygon file’s 
coordinate through the Output Coordinate System parameter. The Extract Mask parameter is 
optional, but it can be used to constrain the analysis to those areas where sinkholes are expected. 
The Extract Mask Parameter should be used when users know which portion of the study area have 
existing sinkholes. This will an empirical knowledge developed based upon the familiarity of a 
certain area. As mentioned in Section 4.3.1, users should identify and obtain all available layers 
and composite them into a single layer and use it as a filtering layer to constrain the analysis to 
those areas where sinkholes are expected.  

 
Figure 22. The user interface of the Sinkhole Extractor tool that is compatible with ArcGIS. 

The Processing Bit Depth parameter is used to control the output bit depth of the DEM mosaic. 
Three bit depth values are available, including 32-bit Signed, 32-bit Float, and 64-bit. Their 
specific applications are summarized in Table 2. Users should use 32-Bit Signed, 32-Bit Float, and 
64-Bit for a study area that is located in a region where the terrain is relatively flat, rolling, and 
steep, respectively. For this research, the study site is located in a relatively flat area, and therefore, 
32-Bit Signed was used. More detailed information about this tool is provided in Appendix B. 
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Table 2. Bit depth options and their applications. 

Bit Depth Applications 

32-bit Signed 
When selecting 32-Bit Signed, the output DEM mosaic will truncate the 
elevation values to the nearest integer value which will output a smaller 
(file size) DEM mosaic file but will lose elevation details. 

32-bit Float 
When selecting 32-Bit Float, the output DEM mosaic will preserve the 
elevation values which will output a larger DEM mosaic but preserve the 
elevation detail. 

64-bit 

When selecting 64-Bit, the output DEM mosaic will also preserve the 
elevation values which will output a larger DEM mosaic but preserve the 
elevation detail. This should be selected if the 32-Bit Float option cannot 
provide enough value range. 

 

Users can also specify the minimum and maximum sinkhole surface area to further filter the 
results. This is the minimum or maximum that will be found in the output sinkhole polygon file 
and measured in the square distance units in the map. This method is used as the morphology-
based feature extraction. The default value for the minimum area and maximum area is 100 and 
1,000,000 of the map unit squared (e.g., square meters). The project team worked with NCKRI 
and it revealed that the size range of 100 m2 and 30,000 m2 is operationally effective for the 
project’s study area. Figure 23 shows the detection result when using 32-Bit Float and 100 m2 and 
5,000,000 m2 limit.  
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Figure 23. Sinkhole detection result when using 32-Bit Float with minimum 100 m2 and maximum 5,000,000 m2 area limit. 

As Figure 23 shows, the detected sinkholes are still distributed across the terrain. That being said, 
the detected sinkholes still appear all over the map. This is because 32-Bit Float is not appropriate 
for relatively flat area. Figure 24 shows the detection result when using 32-Bit Signed and 
minimum 100 m2 and maximum 5,000,000 m2 area limit. As it shows, the result is more realistic. 
However, there is a very large sinkhole on the left side. Further exploration reveals that it is a 
reservoir instead of a sinkhole (Figure 25).  
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Figure 24. Sinkhole detection result when using 32-Bit Signed with minimum 100 m2 and maximum 5,000,000 m2 area limit. 
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Figure 25. A false positively detected sinkhole which is actually a reservoir. 

This example shows that how important to use the morphology-based feature extraction technique 
to further filter the sinkhole detection results. Figure 26 shows the result when using the minimum 
and maximum area parameters to filter the sinkhole detection results. The project team used 100 
m2 for the minimum area and used 30,000 m2 for the maximum area.  
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Figure 26. Sinkhole detection result when using 32-Bit Signed with minimum 100 m2 and maximum 30,000 m2 area limit. 
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As shown in Figure 25, there are 361 sinkholes that have been successfully detected and mapped. 
However, only certain areas within the study area are expected to have sinkholes. Another 
parameter that can be used to further filter the sinkhole detection result (with minimum 100 m2 
and maximum 30,000 m2 area limit) is the Extract Mask. It can be used to constrain the sinkhole 
detection to those area where sinkhole are expected. Worked with NMDOT District 2, the project 
team was able to digitize a single shapefile layer and use it as a filtering layer to constrain the 
analysis to those areas where sinkholes are expected. Figure 27 shows the used extract mask. 

 
Figure 27. The location of the extract mask and the study area. 
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When the extract mask was applied, the sinkhole map is further improved. Figure 28 shows the 
improved sinkhole map when the extract mask was applied. There are 126 detected sinkholes in 
the extract mask zone. That being said, 235 sinkholes are further filtered out. Figure 29 shows the 
zoomed-in look of the area that is highlighted with red bordered box in Figure 28. 

 
Figure 28. Sinkhole detection result when using 32-Bit Signed with minimum 100 m2 and maximum 30,000 m2 area limit 
and with the extract mask. 
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Figure 29. The zoomed-in look of the area that is highlighted in Figure 28. 

5.4. Sinkhole Map Validation 
This task was focused on validating the accuracy of detected sinkholes. The validation was 
conducted at two different levels, including the overall level and individual level. For the overall 
level validation, Cohen’s Kappa statistics was used to measure the overall agreement between the 
LiDAR detected sinkholes points and a set of ground-truth sinkhole points (aerial photo digitized 
sinkholes). For the individual level validation, Wilcoxon Signed Rank Test and Mann-Whitney U 
test were used to examine if LiDAR detected sinkholes and aerial photo digitized sinkholes have 
statistically similar morphometric measurements. Detailed discussion regarding these two 
validation processes is provided in the following section. 

5.4.1. Overall Level Validation 
Cohen’s Kappa is a statistics that can be used to measure inter-rater agreement for qualitative 
items. In order to perform the Cohen’s Kappa statistics, four parameters are needed, including True 
Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN). Their meaning 
in the context of this research is listed in Table 3.  

Table 3. Cohen’s Kappa matrix. 

  Ground-Truth 
Sinkholes 

Ground-Truth 
Sinkholes 

  YES NO 

LiDAR Detected 
Sinkholes YES TP FP 

LiDAR Detected 
Sinkholes NO FN TN 
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The Spatial Join tool in ArcGIS was used to extract the TP value. Both the LiDAR detected 
sinkhole polygon layer and the ground-truth sinkhole polygon were uploaded to ArcGIS. There 
are 126 sinkholes in the LiDAR detected sinkhole polygon layer, while there are 121 sinkholes in 
the ground-truth sinkhole polygon layer. Subsequently, the Spatial Join tool was used to identify 
the amount of polygons that are common to both layers (i.e., intersected). The Spatial Join result 
revealed that 107 polygons were intersected, which indicated that the TP value is 107. This resulted 
in FP value being 19. This further resulted in FN value being 14 because the sum of TP and FN 
equals to the amount of sinkholes in the ground-truth sinkhole layer. As mentioned in Section 5.3, 
when using the extract mask, 235 sinkholes were further filtered out and they were not in both the 
LiDAR detected sinkhole layer and the ground-truth sinkhole layer. Therefore the TN value is 235. 
The project team also manually examined each of the 107 sinkholes is actually one-to-one 
matching. That said, the project team examined if a specific LiDAR detected sinkhole intersected 
with its matching ground-truth sinkhole but not any of the unmatching ones. The results revealed 
that the 107 sinkholes were all matched. The aforementioned results are summarized in Table 4. 

Table 4. Cohen’s Kappa Matrix for LiDAR detected sinkholes. 

  Ground-Truth 
Sinkholes 

Ground-Truth 
Sinkholes Total 

  YES NO  

LiDAR Detected 
Sinkholes Yes  107 19 126 

LiDAR Detected 
Sinkholes No 14 235 249 

Total  121 254 375 

 

With the Cohen’s Kappa coefficient interpretation shown in Table 3, the project team conducted 
Cohen’s Kappa statistics calculation and the Cohen’s Kappa coefficient was 0.801. As a general 
rule of thumb, the coefficient value can be classified into five categories, as shown in Table 5 (23). 
As the table revealed, the Cohen’s Kappa coefficient of this research was 0.801 which can be 
considered as very good agreement. Therefore, the overall agreement between LiDAR detected 
sinkholes and ground-truth sinkholes is very good. This proved that LiDAR data can be used to 
accurately detect and map the location of sinkholes. 

Table 5. Cohen’s Kappa coefficient interpretation. 

Cohen’s Kappa  Degree of Agreement 

0.0 – 0.20 Poor 

0.21 – 0.39 Fair 

0.40 – 0.59 Moderate 

0.60 – 0.79 Good  

> 0.80 Very Good 
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5.4.2. Individual Level Validation 
Individual level validation was focused on investigating if the LiDAR detected sinkholes and the 
ground-truth sinkholes have statistically similar morphometric measurements (i.e., surface area). 
In order to select the most appropriate method for comparing two groups of data, the population 
size of each sinkhole dataset (i.e., LiDAR detected sinkholes and ground-truth sinkholes) was 
examined. It revealed that the population size for both sinkhole datasets is 107, which is the TP 
value aforementioned. Most statistical research scientists accept that parametric statistical tests 
should be used if the sample size is equal to or greater than 30, unless the sample is not normally 
distributed. Therefore, the project team graphed the distribution of the two sinkhole datasets in 
Figures 30 to 32. They revealed that both datasets are not normally distributed. 

 
Figure 30. The distribution of the airborne LiDAR detected sinkhole surface area values. 

 
Figure 31. The distribution of the ground-truth sinkhole surface area values. 
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Figure 32. Box plot of the airborne LiDAR detected sinkhole and ground-truth sinkhole morphometric measurements. 

Continuing with visual analysis, formal statistical tests were performed. Shapiro-Wilk test was 
used to test if the two sinkhole datasets are normally distributed. Table 5 shows the Shapiro-Wilk 
test results for both sinkhole datasets. 

Table 6. Normality test results for LiDAR detected and ground-truth sinkhole layers. 

Dataset Null Hypothesis P-value 

LiDAR Detected Sinkholes The distribution of the population is normal  < 0.0001 

Ground-Truth Sinkholes The distribution of the population is normal < 0.0001 

 

The normality test results revealed that both LiDAR detected sinkholes and ground-truth sinkholes 
are not normally distributed because the p values are less than 0.05. Therefore, nonparametric 
statistical tests were selected for comparing groups. Morphometric measurements were performed 
as a paired group and unpaired group. Paired group tests are more appropriate if two groups of 
measurements are dependent (i.e., repeated measurement for the same subject but at two different 
times). Unpaired group tests are more appropriate if two groups of measurements are independent 
(i.e., measurement for one sample in Group A has no bearing on the measurement for one sample 
in Group B). The relationship between LiDAR detected sinkhole measurements and ground-truth 
sinkhole measurements can be interpreted in both a dependent way and an independent way. In 
the dependent way, repeated measurements of a specific sinkhole were performed from LiDAR 
detected sinkholes and on the aerial photo digitized sinkholes. In the independent way, LiDAR 
detected sinkhole morphometric measurements have no bearing on the aerial photo based 
morphometric measurements since they are from two different data sources. Since the relationship 
can be interpreted in both ways, to err on the side of caution, this research used both paired group 
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and unpaired group statistical tests to examine if the morphometric measurements from LiDAR 
detected sinkholes and ground-truth sinkholes are statistically different. 

In the paired group test, repeated measurements (one from LiDAR detected sinkholes while the 
other one from ground-truth sinkholes) of a specific sinkhole constitute a pair, and the purpose of 
this comparison is to examine if the median of differences between pairs of measurements is zero. 
Nonparametric Wilcoxon Signed Rank Test, which does not assume normality in the data, was 
used in this study as a robust alternative to parametric Student’s T-Test. The null hypothesis is the 
median of differences between pairs of measurements is zero. The p-value for the test is less than 
0.0001. Therefore, it is necessary to reject the null hypothesis and be in favor of the alternative 
hypothesis at the 0.05 significance level. That being said, the median of differences between pairs 
of measurements is not zero. Further exploration revealed that the LiDAR detected sinkhole 
boundaries sometimes are not completed or finished. In other words, sometimes there are holes 
within a sinkhole boundary. These holes also result in LiDAR detected sinkhole boundary being 
consistently smaller than that of the ground-truth sinkhole. Figure 33 explains the aforementioned 
issue. This is caused by no difference between the filled DTM’s and original DTM’s pixel values 
or simply by no pixel values (airborne LiDAR data collection missed this small area). On the other 
hand, the use of aerial photo digitization to create ground-truth sinkhole boundary could also result 
in incorrect delineation because sometimes it is very challenging to know where the boundary line 
falls. Therefore, it is not surprise to obtain a statistical result that is not significant. However, as it 
shows in Figure 33, the LiDAR detected sinkhole boundary and the ground-truth sinkhole 
boundary are very close. For all of the matched sinkholes, the project team did not find any one of 
them has the issue of boundary shift. Boundary shift issue is the LiDAR detected sinkhole 
boundary just barely touched the ground-truth sinkhole boundary.  

 
Figure 33. The boundary of LiDAR detected sinkholes (in beige color) and the ground-truth sinkholes (in jade color). 

In the unpaired group test, two sets of morphometric measurements constitute two independent 
groups, and the purpose of this test is to examine whether two independent groups of measurements 
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exhibit the same distribution patterns (i.e., shape and spread) or have differences in medians. 
Nonparametric Mann-Whitney U test, also known as Wilcoxon Rank-Sum test, which also does 
not assume normality in the data, was used to detect differences in shape and spread as well as 
differences in medians. For this test, data from each population must be an independent random 
sample, and the population must have equal variances. For non-normally distributed data, the 
Levene’s test is usually adopted to determine variance equability. 

For the Levene’s test, the null hypothesis is that the population variances are equal. The p-value 
for this test is 0.728, and therefore, the null hypothesis should be accepted. This indicated that the 
population variances for each group of comparison are equal at a 0.05 significance level. Therefore 
the Mann-Whitney U test is appropriate for comparing the differences in shape and spread as well 
as difference in medians. For the Mann-Whitney U test, the null hypothesis is that there is no 
difference in the distribution (shape and spread) of ground-truth morphometric measurements and 
LiDAR detected morphometric measurements. The p-value for this test is 0.282, and therefore, the 
null hypothesis should be retained, meaning there is no significant difference in the distribution 
pattern at a 0.05 significance level. This result revealed that at a group level, the LiDAR detected 
sinkhole morphometric measurements and the ground-truth measurements are statistically similar. 
This further proved that LiDAR can provide valid information that can be used to detect and 
delineate sinkhole boundary to generate a sinkhole database in a prompt fashion. 
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6. CONCLUSIONS 
Sinkholes subsidence and collapse may cause significant structural damage to transportation 
infrastructure assets and are primarily a problem in karst areas where soluble bedrock is 
predominant. Subsequently, transportation infrastructure management agencies at all levels (e.g., 
federal, state, tribal, and local) dedicate a large amount of time and money to detect and map 
sinkholes as part of their infrastructure asset management programs. These collected sinkhole data 
are used by the aforementioned agencies to determine the extent and severity of sinkholes, and 
then to make decisions on the distribution of limited resources for sinkhole hazard mitigation to 
avoid potential public safety threats and problems. 

Traditionally, sinkholes are primarily detected through area reconnaissance, which includes visual 
inspection of a site to locate existing sinkholes or device inspection of a site to locate potential 
sinkholes or previously filled sinkholes. This method is expensive, time-consuming, labor-
intensive, and potentially dangerous to the inspectors. More importantly, because of its ground-
based nature, this method is limited not only by the accessibility of the site but also the ability of 
the inspectors or devices to observe the entire site. For example, heavy-vegetation in a certain site 
may make it extremely difficult or even impossible to conduct any reconnaissance at all.  

To overcome these challenges, this research focused on exploring the utility of airborne LiDAR in 
detecting and mapping sinkholes. This research used airborne LiDAR data in combination with 
not only object-based image analysis (OBIA) techniques but also auxiliary context information 
such as site and association to improve the accuracy of the current morphology-based sinkhole 
detection methods. Research results revealed that airborne LiDAR data derived DEMs can be used 
to identify all the possible sinkhole locations to develop preliminary sinkhole maps. The project 
team also successfully used OBIA and extract mask to conduct context-based feature extraction to 
delineate sinkhole boundaries and at the same time remove the false positively detected sinkholes. 
In addition, the project team used morphology-based feature extraction (i.e., sinkhole surface area) 
to further remove the false positively detected sinkholes.  

The sinkhole map validation results have shown that the overall agreement between airborne 
LiDAR detected sinkholes and ground-truth sinkholes is very good. This proved that airborne 
LiDAR data can be used to accurately detect the location of sinkholes. With the help of the 
developed ArcGIS compatible toolset, this aforementioned sinkhole detection process can also be 
accomplished in a prompt fashion. At individual sinkhole level, the results revealed the airborne 
LiDAR detected sinkholes and ground-truth sinkholes do not have statistically similar 
morphometric measurements. This discrepancy were contributed by both the LiDAR detected 
sinkholes and ground-truth sinkholes, as discussed in the Analysis and Findings section. At 
individual group level, LiDAR detected sinkhole morphometric measurements and the ground-
truth measurements are statistically similar. This further proved that airborne LiDAR can provide 
valid information that can be used to detect and delineate sinkhole boundary in a prompt fashion. 
The airborne LiDAR detected sinkholes can be potentially applied to evaluate overall sinkhole 
risks for rapid, high-level information checks.  

It is revealed that the developed LiDAR sinkhole detection toolset is only limited by the spatial 
resolution and vertical accuracy of the input airborne LiDAR data. That being said, with higher 
spatial resolution and vertical accuracy input elevation data, the results are expected to be more 
effective. Therefore, future exploration should be focused on obtaining higher spatial resolution 
and vertical accuracy LiDAR data from various platforms, including, but not limited to, small 
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unmanned aircraft systems (sUAS), manned aircraft, and satellites. In addition, more accurate 
ground survey sinkhole data will be obtained to further investigate if the airborne LiDAR detected 
sinkholes and ground surveyed sinkholes have statistically similar morphometric measurements. 
In addition, this research did not focus on sinkhole depth because the project team did not have the 
depth information. However, the developed ArcGIS compatible toolset can be easily revised to 
extract the depth information from the LiDAR derived DEMs. 
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APPENDIX A: BEST PRACTICES FOR IMPLEMENTING A STATE-
LEVEL SINKHOLE HAZARD MANAGEMENT SYSTEM (SHMS) 
1. The SHMS should be developed based on a standard geographic information system (GIS). 

2. The state transportation management agency should have specialized staff on a regular basis. 
This specialized staff should have a solid background in both sinkhole inspection and GIS. 

3. The state transportation management agency needs to develop a complete database to 
understand the spatial distribution of the sinkholes.  

4. When residents see a sinkhole appear, the state transportation management agency should 
immediately protect the surrounding areas so that nobody walks closer to the sinkhole.  

5. The state transportation management agency should keep in touch with various state agencies 
to obtain the most current airborne LiDAR data or other elevation data that have been collected. 
And if at all possible, the state transportation management agency should also consider 
contributing funding to airborne LiDAR data collection. 

6. When ground inspection performed for sinkholes, the field inspectors should take detailed 
photos and notes and this information should be updated in the sinkhole database as soon as the 
inspectors return back to the office. 

7. The sinkhole geodatabase should use vector polygons instead of vector points. Two benefits 
will be provided by the polygon file. First, the morphometric measurements (e.g., length, width, 
area) will be automatically updated if the database administrator updated the database. Second, 
polygons can provide richer information regarding sinkholes than points. When the polygons are 
visualized on a map, the audience can easily understand the shape and distribution of the sinkholes. 

8. The state transportation management agency should explore the utility of Volunteer Geographic 
Information (VGI) in obtaining real-time sinkhole status. VGI is a spatial data that has been 
contributed for free by citizen volunteers.  

9. Some useful attributes should be considered in the SHMS, including, but not limited to, sinkhole 
ID, location, county, date identified, source of report, drainage status, shape, length, width, depth, 
property damage, feature repaired, witness name, witness phone, verified sinkhole, and comments. 

10. The state transportation management agency should develop a web platform to allow the public 
to have free access to the sinkhole information. The web interface should be user-friendly and have 
the basic functions to allow the users to be able to examine the location of the sinkholes, the date 
that the sinkhole was identified, and the size and shape of the sinkholes. 

11. The state transportation management agency should collaborate with local universities or 
colleges for workforce development and professional training. 

12. The state transportation management agency should collaborate with National Cave and Karst 
Research Institute (NCKRI) to develop a complete working procedure to summarize the 
morphology characteristics of local sinkholes.  



43 

APPENDIX B: LIDAR BASED SINKHOLE DETECTION AND MAPPING 
TOOLSET GUIDEBOOK 
This guidebook is developed to assist transportation management agencies with professional 
training and education and workforce development. This guidebook provides detailed instructions 
on how to use the developed ArcGIS compatible airborne LiDAR based sinkhole detection and 
mapping toolset.  

Minimum Computer System Requirements: 

• Memory: 8GB and more 
• CPU: Intel Core i5 
• GPU: 2GB and more 
• Hard Drive: 512GB and more 

Part A. Toolset Download 

1. Go to the download page; the download page looks like the following. 

 
Figure B1. Downloading page interface for the sinkhole extraction tool. 

2. Click on the button of “Clone or download”. This following dialog will pop up.  

https://github.com/edac/Sinkhole-Extraction-Tool
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Figure B2. Clone and download button and its interface. 

3. Click on Download ZIP. The download will start in a few seconds.  

4. The users can find the toolset is compressed in a zip file once the download completed.  

 
Figure B3. Downloaded sinkhole extraction tool. 

 

Part B. Toolset Installation 

1. Unzip the downloaded toolset. 

2. Open ArcMap 10.3.1 or newer version. 

3. The ArcMap user interface looks like the following. 
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Figure B4. ArcMap software user interface. 

3. In the Standard Toolbar, click on the ArcToolbox button below (the icon with the red box). 

 
Figure B5. ArcMap software standard toolbar. 

4. The ArcToolbox dialog will open. See the screen capture in the next page. 
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Figure B6. ArcMap ArcToolbox user interface. 
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5. Right-click on any blank space in the ArcToolbox, and then the Add Toolbox button will show 
up. 

 
Figure B7. Add Toolbox button. 

6. Click on the Add Toolbox button. 
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7. Browse to the folder where the sinkhole toolset was saved at. 

 
Figure B8. AddToolbox user interface. 

8. Select the sinkhole mapper and then click on Open. The toolset will be added to the ArcToolbox. 

 
Figure B9. Added sinkhole toolbox. 



49 

9. Click on the plus sign next the Sinkhole Toolbox. The two tools associated with this toolset will 
show up. 

 
Figure B10. Expanded sinkhole toolbox. 
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10. Double-click on the DEM Creator tool. The user interface looks as the following screen 
capture. 

 
Figure B11. DEM creator tool user interface. 

11. Double-click on the Sinkhole Extractor tool. The user interface looks as the following screen 
capture. 

 
Figure B12. Sinkhole extractor tool user interface. 



51 

12. Users can click on the Hide Help to hide the tool instruction on the right column of the tools. 
Users can also click on the Show Help to display the tool instruction again.  

 
Figure B13. A way to close and open Help dialog. 
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Part C. Instructions on How to use the DEM Creator Tool 

 
Figure B14. DEM creator tool with parameters filled in. 

If the users only have the raw LiDAR LAS files, this tool can help the users create the needed 
digital elevation model (DEM) for the Sinkhole Extractor tool. There are eight parameters for this 
tool.  

1. LAS Input Directory. 

This is the directory where the input LiDAR LAS tiles are found. 

2. Output Raster Directory 

This is the directory in which the output DEM raster will be placed. The output DEM raster will 
be a single tile if the users input a single LAS tile. The output DEM raster will be also be single 
tile if the users input many LAS tiles, but the single DEM tile’s spatial coverage will be equal to 
all input LAS tiles’. 

3. Output Coordinate System 

The coordinate system of the original DEM tiles. This needs to be in a projected coordinate system 
and not a spheroidal (geographic) coordinate system.  
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4. Cell Assignment Type (optional) 

This is an optional parameter. Users are suggested to use the default value. Cell Assignment Type 
is used to determine each output cell’s value using the LiDAR points that fall within its extent. 
Average will find the average value of all points within the cell and then assign the average value 
to the cell. Minimum will find the minimum value of all points within the cell and then assign the 
minimum value the cell. This is the default option. Maximum will find the maximum value of all 
points within the cell and then assign the maximum value the cell. IDW will find the inverse 
distance weighted interpolation value of all points within the cell and then assign the IDW value 
to the cell. Nearest will find the nearest neighbor LiDAR point to the cell centroid and then use 
that LiDAR point’s value to determine the cell value.  

5. Void Fill Method (optional) 

This is an optional parameter. Users are suggested to use the default value. Void Fill Method is 
used to determine the values for cells that do not contain any LiDAR points. None – NoData is 
assigned to the cell. Simple – Averages the values from data cells immediately surrounding a 
NoData cell to eliminate small voids. Linear – Triangulates across void areas and users linear 
interpolation on the triangulated value to determine the cell value. This is the default. Natural 
Neighbor – Uses natural neighbor interpolation to determine where the void is and then assign that 
natural neighbor polygon’s value to that void. 

6. Output Data Type (optional) 

This is the output raster type of the DEM. Users are suggested to use the default value. There are 
two options. FLOAT – The output will be floating point which will preserve the original elevation 
values. This is the default. INT –The output will be integer and truncate the original elevation 
value to nearest integer, but will create a smaller size file. 

7. Cell Size 

The size of the output cell in projection distance units. 

8. Z Factor 

The factor by which Z values will be multiplied. This is typically used to convert Z linear units to 
match XY linear units. The default is 1, which leaves elevation values unchanged.  
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Part D. Instructions on How to use the DEM Creator Tool 

 
Figure B15. Sinkhole extractor tool with parameters filled in. 

This tool uses DEMs tiles to look for and extract potential sinkholes. The user can define the 
minimum and maximum size of sinkholes being searched. In addition, the user can supply an 
extract mask shapefile. After creating a DEM mosaic in a user-defined geodatabase, the tool 
applies the Mean Shift segmentation method to derive the output sinkhole polygons. There are ten 
parameters for this tool. 

1. Output Directory 

This is the directory in which the output geodatabase will be placed. This geodatabase will have 
the DEM mosaic and the sinkhole polygon feature class. 

2. DEM Input Directory 

This is the directory where the DEM tiles are found.  

3. Output Coordinate System 

The coordinate system of the original DEM tiles. This needs to be in a projected coordinate system 
and not spheroidal (geographic) coordinate system. 
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4. Extract Mask (optional) 

This is an optional parameter. It has to be shapefile and it will be used to constrain the analysis to 
those areas where sinkholes are expected. This should be in the same projection as the DEM data. 
The default is that the Extract Mask do not exist.  

5. Processing Bit Depth (optional) 

This is an optional parameter. This parameter is used to determine the output bit depth of the DEM 
mosaic. Selecting 32 Bit Signed option will truncate the elevation values to the nearest integer 
value which will output a smaller DEM mosaic file but will lose some elevation detail. This is the 
default. Selecting 32 Bit Float option will preserve the elevation values which will output a larger 
DEM mosaic but preserve the elevation detail. Selecting 64 Bit will preserve the elevation values 
which will output a larger DEM mosaic but preserve the elevation detail. This should be selected 
if the 32 Bit Float option cannot provide enough value range. 

6. Spectral Detail 

During the image segmentation process this sets the level importance given to the spectral 
differences of features in the imagery. A default value is set to 15.5 but valid values range from 
1.0 to 20.0. A higher value is appropriate when the features are spectrally similar. Smaller values 
create smoother outputs. If the output does not identify enough features, then raise the value. If it 
identifies too many features then lower the value. 

7. Spatial Detail 

During the image segmentation process this sets the level importance given to the spatial 
differences of features in the imagery. A default value is set to 15.5 but valid values range from 
1.0 to 20.0. A higher value is appropriate when the features are spatially similar. Smaller values 
create smoother outputs. If the output does not identify enough features, then raise the value. If it 
identifies too many features then lower the value. 

8. Min Segment Size 

The minimum size of the raster object that will be output from the image segmentation process. 
Area is measured in the square distance units. 

9. Minimum Area 

The minimum size of the polygons that will be found in the output file Area is measured in the 
square distance units. 

10. Maximum Area 

The maximum size of the polygons that will be found in the output file Area is measured in the 
square distance units. 
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APPENDIX C. LIDAR BASED SINKHOLE DETECTION AND MAPPING 
TOOLSET CODES 

import arcpy 

import os 

import datetime 

from arcpy import env 

from time import sleep 

from arcpy.sa import * 

import glob 

import arceditor 

 

arcpy.env.overwriteOutput = True 

timestamp = datetime.datetime.now() 
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class Toolbox(object): 

  def __init__(self): 

    self.label = "Sinkhole Toolbox" 

    self.alias = "EDAC Sinkhole Toolbox" 

 

    # List of tool classes associated with this toolbox 

    self.tools = [Sinkhole_Extractor,DEMCreator] 

 

class DEMCreator(object): 

  def __init__(self): 

    self.label = "DEM Creator" 

    self.description = "This tool creates DEM tiles from the LAS tiles which can be used for the 
Sinkhole Extractor tool if bare earth DEM tiles are not available." 

    self.canRunInBackground = False 

  def getParameterInfo(self): 

    lasdir = arcpy.Parameter(displayName="LAS Input Directory", name="LAS Input Directory", 
datatype="DEFolder", parameterType="Required", direction="Input") 

    outputraster = arcpy.Parameter(displayName="Output Raster Directory", name="Output 
Raster Directory", datatype="DEFile", parameterType="Required", direction="Output") 

    crs = arcpy.Parameter(displayName="Output Coordinate System", name="Output Coordinate 
System", datatype="GPCoordinateSystem", parameterType="Required", direction="Input") 

 

    # return_values = arcpy.Parameter(displayName="Return Values",name="Return 
Values",datatype="GPString",parameterType="Optional",direction="Input") 

    # return_values.value = "Last Return" 

    # return_values.filter.type = "ValueList" 

    # return_values.filter.list = ["Last Return","First of Many","Last of Many","Single 
Return","1","2","3","4","5"] 
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    binningcell = arcpy.Parameter(displayName="Cell Assignment Type",name="Cell 
Assignment Type",datatype="GPString",parameterType="Optional",direction="Input") 

    binningcell.value = "MINIMUM" 

    binningcell.filter.type = "ValueList" 

    binningcell.filter.list = ["AVERAGE","MINIMUM","MAXIMUM","IDW","NEAREST"] 

    binningvoid = arcpy.Parameter(displayName="Void Fill Method",name="Void Fill 
Method",datatype="GPString",parameterType="Optional",direction="Input") 

    binningvoid.value = "LINEAR" 

    binningvoid.filter.type = "ValueList" 

    binningvoid.filter.list = ["NONE","SIMPLE","LINEAR","NATURAL_NEIGHBOR"] 

    outputdatatype = arcpy.Parameter(displayName="Output Data Type",name="Output Data 
Type",datatype="GPString",parameterType="Optional",direction="Input") 

    outputdatatype.value = "FLOAT" 

    outputdatatype.filter.type = "ValueList" 

    outputdatatype.filter.list = ["FLOAT","INT"] 

    cell_size = arcpy.Parameter(displayName="Cell Size", name="Cell Size", 
datatype="GPDouble",parameterType="Required", direction="Input" ) 

    cell_size.value = 1 

    z_factor = arcpy.Parameter(displayName="Z Factor", name="Z Factor", 
datatype="GPDouble",parameterType="Required", direction="Input" ) 

    z_factor.value = 1 

    parameters = 
[lasdir,outputraster,crs,binningcell,binningvoid,outputdatatype,cell_size,z_factor] 

    return parameters 

  def isLicensed(self): # optional 

    return True 

 

  def updateMessages(self, parameters): 
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    return 

 

  def execute(self, parameters, messages): 

    lasdir = parameters[0].valueAsText 

    outputraster = parameters[1].valueAsText 

    crs = parameters[2].valueAsText 

    return_values = "Last Return" #parameters[3].valueAsText 

    binningcell=parameters[3].valueAsText 

    binningvoid=parameters[4].valueAsText 

    outputdatatype=parameters[5].valueAsText 

    cell_size=parameters[6].valueAsText 

    z_factor=parameters[7].valueAsText 

    

    class_code="2" 

   #define output paths 

    

    temp=os.environ.get("TEMP") 

    lasd=os.path.join(temp,"tempLASD.lasd") 

    lasd2=os.path.join(temp,"tempLASD2.lasd") 

 

  # Execute CreateLasDataset 

    arcpy.AddMessage("Execute Create Las Dataset") 

    arcpy.management.CreateLasDataset(lasdir,lasd,spatial_reference=crs) 
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  # Execute Make LAS Dataset Layer 

    arcpy.AddMessage("Make LAS Dataset Layer") 

    if class_code is not None and return_values is not None: 

      
arcpy.MakeLasDatasetLayer_management(lasd,lasd2,class_code=class_code,return_values=retu
rn_values) 

    elif class_code is not None: 

      arcpy.MakeLasDatasetLayer_management(lasd,lasd2,class_code=class_code) 

    elif return_values is not None: 

      arcpy.MakeLasDatasetLayer_management(lasd,lasd2,return_values=return_values) 

    else: 

      arcpy.MakeLasDatasetLayer_management(lasd,lasd2) 

 

 

  # Execute Las Dataset To Raster 

  # LasDatasetToRaster_conversion (in_las_dataset, out_raster, {value_field}, 
{interpolation_type}, {data_type}, {sampling_type}, {sampling_value}, {z_factor}) 

    arcpy.AddMessage("Execute Las Dataset To Raster") 

    arcpy.LasDatasetToRaster_conversion (lasd2, outputraster,"ELEVATION", "BINNING 
"+binningcell+" "+binningvoid , outputdatatype, "CELLSIZE", cell_size, z_factor) 
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class Sinkhole_Extractor(object): 

  def __init__(self): 

    self.label = "Sinkhole Extractor" 

    self.description = "This tool extracts sinkholes" 

    self.canRunInBackground = False 

  def getParameterInfo(self): 

   # Input parameters 

    outputdir = arcpy.Parameter(displayName="Output Directory", name="Output Directory", 
datatype="DEFolder", parameterType="Required", direction="Input") 

 

    demdir = arcpy.Parameter(displayName="DEM Input Directory", name="DEM Input 
Directory", datatype="DEFolder", parameterType="Required", direction="Input") 

 

    crs = arcpy.Parameter(displayName="Output Coordinate System", name="Output Coordinate 
System", datatype="GPCoordinateSystem", parameterType="Required", direction="Input") 

 

    mask = arcpy.Parameter(displayName="Extract Mask", name="Extract Mask", 
datatype="DEFeatureClass", parameterType="Optional", direction="Input") 

 

    proc_bit_depth = arcpy.Parameter(displayName="Processing Bit Depth",name="Processing 
Bit Depth",datatype="GPString",parameterType="Optional",direction="Input") 

    proc_bit_depth.value = "32_BIT_SIGNED" 

    proc_bit_depth.filter.type = "ValueList" 

    proc_bit_depth.filter.list = ["32_BIT_SIGNED","32_BIT_FLOAT","64_BIT"] 

 

 

    spectral_detail = arcpy.Parameter(displayName="Spectral Detail", name="Spectral Detail", 
datatype="GPDouble", parameterType="Required", direction="Input") 
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    spectral_detail.value = 15.5 

    spatial_detail = arcpy.Parameter(displayName="Spatial Detail", name="Spatial Detail", 
datatype="GPLong", parameterType="Required", direction="Input") 

    spatial_detail.value = 15 

    min_segment_size = arcpy.Parameter(displayName="Min Segment Size", name="Min 
Segment Size", datatype="GPLong", parameterType="Required", direction="Input") 

    min_segment_size.value = 20 

 

    shapeareaMin = arcpy.Parameter(displayName="Minimum Area (in map distance units 
squared)", name="Minimum Area", datatype="GPLong", parameterType="Required", 
direction="Input") 

    shapeareaMin.value=100 

    shapeareaMax = arcpy.Parameter(displayName="Maximum Area (in map distance units 
squared)", name="Maximum Area", datatype="GPLong", parameterType="Required", 
direction="Input") 

    shapeareaMax.value=1000000 

    parameters = [outputdir, demdir, crs, mask, proc_bit_depth,spectral_detail, spatial_detail, 
min_segment_size, shapeareaMin,shapeareaMax] 

    return parameters 

 

  def isLicensed(self): # optional 

    return True 

 

  def updateMessages(self, parameters): 

    return 

 

 

  def execute(self, parameters, messages): 



63 

     

     arcpy.SetProgressor("default", "Working...", 0, 2, 1) 

    outputdir = parameters[0].valueAsText 

    dem_tiles = parameters[1].valueAsText 

    crs = parameters[2].valueAsText 

    mask = parameters[3].valueAsText #mask 

    proc_bit_depth = parameters[4].valueAsText 

    spectral_detail = parameters[5].valueAsText 

    spatial_detail = parameters[6].valueAsText 

    min_segment_size = parameters[7].valueAsText 

    shapeareaMin = parameters[8].valueAsText 

    shapeareaMax = parameters[9].valueAsText 
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# Local variables: 

    sinkhole_gdb = os.path.join(outputdir, "Sinkhole.gdb") 

    Mosaic_Dataset = os.path.join(outputdir, "Sinkhole.gdb", "dem_mosaic") 

    Mosaic_Dataset_Final = os.path.join(outputdir, "Sinkhole.gdb", "dem_mosaic_final") 

    sinkholeDissolve = os.path.join(outputdir, "Sinkhole.gdb", "sinkholeDissolve") 

    Sinkhole_polygons = os.path.join(outputdir, "Sinkhole.gdb", "Sinkhole_polygons") 

    dem_fill_img = os.path.join(outputdir, "dem_fill.img") 

    dem_diff_img = os.path.join(outputdir, "dem_diff.img") 

    dem_diff2_img = os.path.join(outputdir, "dem_diff2.img") 

    dem_diff2mask_img = os.path.join(outputdir, "dem_diff2mask.img") 

    dem_diff2_is_img = os.path.join(outputdir, "dem_diff2_is.img") 

    sinkhole_polys_shp = os.path.join(outputdir, "sinkhole_polys.shp") 

    SegmentMeanShiftInput = None 
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# Process: Create output file geodatabase 

    arcpy.AddMessage("Creating file GDB") 

    arcpy.CreateFileGDB_management(outputdir, "Sinkhole.gdb") 

    productname=arcpy.GetInstallInfo()['ProductName'] 

    arcpy.AddMessage(productname) 
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# Process: Create Mosaic Dataset 

    arcpy.AddMessage("Creating Mosaic Dataset") 

    arcpy.CreateMosaicDataset_management(sinkhole_gdb, "dem_mosaic", crs, "", 
proc_bit_depth, "NONE", "") 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 

# Process: Add Rasters To Mosaic Dataset 

    arcpy.AddMessage("Adding files from "+str(dem_tiles)+" to mosaic dataset.") 

    #arcpy.AddRastersToMosaicDataset_management(Mosaic_Dataset, "Raster Dataset", 
dem_tiles, "UPDATE_CELL_SIZES", "UPDATE_BOUNDARY", "NO_OVERVIEWS", "", 
"0", "1500", "","", "SUBFOLDERS", "ALLOW_DUPLICATES", "BUILD_PYRAMIDS", 
"CALCULATE_STATISTICS", "NO_THUMBNAILS", "", 
"NO_FORCE_SPATIAL_REFERENCE", "ESTIMATE_STATISTICS", "") 

    arcpy.AddRastersToMosaicDataset_management(Mosaic_Dataset, "Raster Dataset", 
dem_tiles) 
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# Process: Set Null  

    arcpy.AddMessage("Setting any value less than 0 to Null for Mosaic Dataset.") 

    OutSetNull=SetNull(Mosaic_Dataset, Mosaic_Dataset, "VALUE <= 0") 

    OutSetNull.save(Mosaic_Dataset_Final) 
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# Process: Fill 

    arcpy.AddMessage("Running fill on mosaic dataset.") 

    outFill=Fill(Mosaic_Dataset_Final, "") 

    outFill.save(dem_fill_img) 
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# Process: Raster Calculator 

    arcpy.AddMessage("Subtracting mosaic from mosaic fill.") 

    arcpy.Minus_3d(dem_fill_img, Mosaic_Dataset_Final, dem_diff_img) 
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# Process: Set Null  

    arcpy.AddMessage("Setting any value less than 0 to Null for resulting raster values.") 

    OutSetNull=SetNull(dem_diff_img, dem_diff_img, "VALUE <= 0") 

    OutSetNull.save(dem_diff2_img) 
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# Process: Extract by Mask if one is given 

    if mask is not None: 

        arcpy.AddMessage("Mask is provided, so extracting data by mask.") 

        ExtractBy=ExtractByMask(dem_diff2_img, mask) 

        ExtractBy.save(dem_diff2mask_img) 

        SegmentMeanShiftInput=dem_diff2mask_img 

    else: 

        arcpy.AddMessage("No mask provided by user.") 

        SegmentMeanShiftInput=dem_diff2_img 
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# Process: Segment Mean Shift 

    arcpy.AddMessage("Grouping adjacent pixels together that have similar spectral 
characteristics.") 

    SegMeShOut=SegmentMeanShift(SegmentMeanShiftInput, spectral_detail, spatial_detail, 
min_segment_size) 

    SegMeShOut.save(dem_diff2_is_img) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



74 

# Process: Raster to Polygon 

    arcpy.AddMessage("Saving Raster to polygon.") 

    arcpy.RasterToPolygon_conversion(dem_diff2_is_img, sinkhole_polys_shp, 
"NO_SIMPLIFY", "Value") 
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# Process: Write Polygon to sinkhole geodatabase 

    arcpy.AddMessage("Writing Polygon to GDB.") 

    arcpy.FeatureClassToGeodatabase_conversion(sinkhole_polys_shp, sinkhole_gdb) 
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# Process: Dissolve the polygons 

    arcpy.AddMessage("Dissolving polygons.") 

    arcpy.Dissolve_management(sinkhole_polys_shp, sinkholeDissolve, "", "", 
"SINGLE_PART", "") 
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# Process: Select tool to select and output all polygons GTE 100 sq meters(or value provided by 
user). 

    arcpy.AddMessage("Selecting area greater than or equal to "+str(shapeareaMin)+" and less 
than or equal to "+ str(shapeareaMax) +" sq meters.") 

    where="Shape_Area >= "+ shapeareaMin + " AND " + "Shape_Area <= "+ shapeareaMax 

    arcpy.Select_analysis(sinkholeDissolve, Sinkhole_polygons, where) 
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# Process: Clean up extraneous files 

    arcpy.AddMessage("Cleaning up extraneous files") 

    arcpy.Delete_management(dem_fill_img) 

    arcpy.Delete_management(dem_diff_img) 

    arcpy.Delete_management(dem_diff2_img) 

    arcpy.Delete_management(dem_diff2mask_img) 

    arcpy.Delete_management(dem_diff2_is_img) 

    arcpy.Delete_management(sinkhole_polys_shp) 

    arcpy.Delete_management(os.path.join(outputdir, "Sinkhole.gdb", "sinkhole_polys")) 

    arcpy.Delete_management(sinkholeDissolve) 
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#openthis=os.path.join(outdir, "Sinkhole.gdb", "Sinkhole_polygons") 

    if productname=="ArcGISPro": 

 

      arcpy.AddMessage("Will not display output in ArcGIS Pro.") 

     

    elif productname=="Desktop": 

      mxd = arcpy.mapping.MapDocument("CURRENT") 

      arcpy.mapping.ListDataFrames(mxd)[0].name = "Sinkhole Output" 

      addLayer = arcpy.mapping.Layer(Sinkhole_polygons) 

      df = arcpy.mapping.ListDataFrames(mxd)[0] 

      arcpy.mapping.AddLayer(df, addLayer, "BOTTOM") 
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